教育大数据分析(教育大数据分析平台成绩分析报告)
2024-06-14

教育大数据与其他行业大数据的主要区别是什么?

目前来看,两者的主要区别还处在以下几点:一: 结构化数据和非结构化数据 传统行业更多的是结构化数据, 即行数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据,像以应用oracle、Sql Server等数据库的制造型企业的ERP系统。

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

教育大数据的来源 教育是一个超复杂的系统,涉及 教学、管理、教研、服务 等诸多业务。与金融系统具有清晰、规范、一致化的业务流程所不同的是,不同地区、不同学校的教育业务虽然具有一定的共性,但差异性也很突出,而业务的差异性直接导致教育数据来源更加多元、数据采集更加复杂。

大数据与传统数据最本质的区别体现在采集来源以及应用方向上。传统数据的整理方式更能够凸显的群体水平——学生整体的学业水平,身体发育与体质状况,社会性情绪及适应性的发展,对学校的满意度等等。这些数据不可能,也没有必要进行实时地采集,而是在周期性、阶段性的评估中获得。

传统数据和大数据的区别表现在:数据规模不同、内容不同、处理方式不同。数据规模不同 传统数据技术主要是利用现有存在关系性数据库中的数据,对这些数据进行分析、处理,找到一些关联,并利用数据关联性创造价值。这些数据的规模相对较小,可以利用数据库的分析工具处理。

大数据与小数据的主要区别在于对因果关系的追求。大数据分析更侧重于相关关系,即关注“是什么”而非“为什么”。这一转变挑战了人类传统的认知模式和与世界互动的方式。 在应用方面,传统数据主要用于描述过去的状态,而大数据的核心在于预测。

继续教育大数据的分析挖掘主要面临的什么挑战

1、系统平台在进行大数据挖掘分析处理时,主要面临的挑战包括数据复杂性、技术局限性、隐私和安全问题,以及计算资源的需求。首先,数据复杂性是一个重大挑战。大数据通常来自多种不同的来源,如社交媒体、日志文件、事务数据等,这些数据具有不同的格式和结构,包括结构化、半结构化和非结构化数据。

2、第二:类型繁多:愈来愈多为网页、图片、视频、图像等半结构化和非结构化数据信息。第三:价值密度低:以视频安全监控为例,连续不断的监控流中,有重大价值者可能仅为一两秒的数据流;360°全方位视频监控的“死角”处,可能会挖掘出最有价值的图像信息。

3、分布式数据挖掘算法面临的主要挑战包括:(1) 如何降低执行分布式计算所需的通信量?(2) 如何有效地统一从多个资源得到的数据挖掘结果?(3) 如何处理数据安全性问题?非传统的分析 传统的统计方法基于一种假设—检验模式。换句话说,提出一种假设,设计实验来收集数据,然后针对假设分析数据。

4、首先大数据挑战的就是企业的存储系统,大数据爆炸式的增长使得存储系统的容量、扩展能力、传输瓶颈等方面都面临着挑战。与之相连的还有服务器的计算能力,内存的存储能力等等都面临着新的技术攻关。

什么是教育大数据

1、教育是一个超复杂的系统,涉及 教学、管理、教研、服务 等诸多业务。与金融系统具有清晰、规范、一致化的业务流程所不同的是,不同地区、不同学校的教育业务虽然具有一定的共性,但差异性也很突出,而业务的差异性直接导致教育数据来源更加多元、数据采集更加复杂。

2、教育大数据是指在教育活动中产生的以及为教育目的而采集的所有数据。这些数据来源于各种教育活动,如教学、管理、科研和校园活动。教育大数据不仅关注数据的采集,更注重其对教育发展的作用,如提高教育质量、促进教育公平等。 教育大数据的特性 教育大数据的采集过程复杂,应用需要创造性地解决问题。

3、一是建立教师管理信息化体系。以教师系统为支撑,逐步实现教师系统与相关教育管理服务平台的互通、衔接,建立健全覆盖各级教育行政部门、各级各类学校及广大教师的互联互通、安全可靠的教师管理信息化体系,为加快推进教师治理体系和治理能力现代化奠定坚实基础。二是形成教师队伍大数据。

4、教育大数据特指教育领域的大数据,即整个教育活动过程中所产生的以及根据教育需要采集到的、一切用于教育发展并可创造巨大潜在价值的数据集合。教育大数据直接产生于各种教育活动(包括教学活动、管理活动、科研活动、校园活动等),每个教育利益相关者既是教育数据的生产者也是教育数据的消费者。